Trinoceronte

Porque 140 caracteres a veces no son suficientes

Encuentros cercanos del séptimo tipo

bat2

Esta entrada es sobre una película que tal vez no han visto. Sea que la vayan a leer o no después, por favor ¡vean la película!

Acabo de ver “Arrival” (la Llegada), la nueva película de aliens que ha “invadido” las carteleras del mundo (noviembre de 2016).  Si bien no puedo comparar la sensación que me ha dejado la nueva película con la impresión duradera de los (ahora) clásicos Contacto y 2001: una Odisea del Espacio, si puedo decir que su aproximación al problema del primer contacto con Aliens, me ha dejado de una pieza.  No hay duda de que es cada vez más sofisticada y posiblemente acertada la manera como el cine esta ilustrándonos el que podría ser el evento más importante de los ~400 siglos de historia de la mente humana (si es que algún día tenemos la suerte de que pase).  He aquí algunas impresiones de un fanático de la ciencia ficción y al mismo tiempo de un científico obsesionado (como muchos) por entender o prever cómo serán los “otros”.

“Arrival: un paso más adelante hacia la creación de películas inteligentes sobre encuentros extraterrestres ¡imperdible!
Noviembre 9 de 2014
http://bit.ly/trino-arrival

arrival_rated_payoff_1-sht_6Dice la hipótesis Sapir–Whorf que percibimos el mundo en una forma que depende profundamente de la manera como se organizan nuestro lenguaje.  O en otras palabras, que vemos el mundo como “hablamos”.

Esta es la idea en el corazón de “Arrival” (la Llegada) el más reciente film de gran factura, que aborda el “trillado” tema del contacto con una civilización extraterrestre.  Muchas otras películas (y series) lo han hecho en el pasado.  Algunas con seriedad y acierto – Contacto, Encuentros Cercanos del Tercer Tipo, 2001, Distrito 9 (dentro de lo que se podría esperar de un tema tan incierto como este) y otras son apenas una caricatura antropocéntrica y fantástica del asunto – El día que la Tierra se detuvo, El día de la Independencia, V la Batalla final.

Después de ver un puñado de aproximaciones diferentes al problemas y de reflexionar profesionalmente sobre el tema desde la ciencia, veo en “Arrival” una solución novedosa y sofisticada al que se sabe podría ser el obstáculo más grande que enfrentaremos cuando llegue el momento de encontrarnos con “los otros”: ¿cómo comunicarnos con ellos?

El asunto ha sido minimizado y hasta ridiculizado en otras películas.  Desde extraterrestres que hablan un inglés fluído (El día en el que la Tierra se detuvo, V la batalla final), o lo aprenden sin inconvenientes (ET), hasta otros que producen sonidos guturales extraños (El depredador) pero que usan un software en sus naves no muy difícil de “hackear” (Día de la Independencia).

encuentros-cercanos-del-tercer-tipo-prz-mkv-2_01_06-000008

Todo esto es aceptable, excepto porque en las películas mencionadas, el problema de la comunicación es casi siempre lo de menos.  Con la única excepción del clásico Encuentros Cercanos del Tercer Tipo (en donde el lenguaje es otra vez protagonista),  la comunicación con los extraterrestres se supone es resuelta por algún milagro y una vez superado este “pequeño” escollo, que vengan los demás problemas.

En “Arrival” es diferente: el lenguaje es la historia y al mismo tiempo el asunto mismo del intercambio con la civilización extraterrestre.  Podría uno esperar encontrarse algún asunto trillado en todo esto.  Pero la película esta lejos de tratar el tema de forma trivial.

La primera aproximación que tenemos a la “lengua” de los recién llegados es a través de una grabación de audio.  Ninguna sorpresa por supuesto.  Nada comprensible (como se esperaría de los sonidos producidos por cualquier especie distinta a la nuestra), pero en el rango audible (algo en lo que pecan los productores pero que hace de la película una verdadera joya en el tema de edición de audio).  Yo esperaría que organismos que vienen de un planeta diferente produjeran sonidos en rangos de frecuencias posiblemente inaudibles, pero le perdono al director y sus asesores esta falta de creatividad “acústica”.

arrival-1024x682Hasta ahí no pasaría de ser una película de aliens más.  La verdadera sorpresa comienza cuando la Doctora Louise Banks (una experta en lingüistica interpretada por Amy Adams) intenta lo impensable: comunicarse con ellos a través del lenguaje escrito.  Pero no con mensaje electrónicos como lo vemos en la mayoría de las películas (que no sabemos como en esas películas logran extraerse de las igualmente incomprensibles comunicaciones digitales de los extraterrestres).  Sino a través del “viejo” método del tablero y el marcador (hubiera preferido la tiza, pero se los perdono también a los realizadores).

Pero si no podemos entenderles ¿cómo esperamos que ellos entiendan lo que escribimos en una tabla?.

No es esa la idea.  Al intentar comunicarnos con ellos a través de la manipulación de la materia (el polvo negro del marcador y la electricidad estática en una lámina de plástico) lo que logra la doctora Banks es un acto de imitación de parte de los extraterrestres: “te escribo para que me escribas”.

Los heptápodos (que es el nombre que le dan los científicos a los extraterrestres por sus siete extremidades y lo que da también nombre a esta entrada), responden sin demoras y en la pantalla emerge un lenguaje extraterrestre escrito, completamente nuevo en la historia del cine (o por lo menos completamente nuevo para mi).

arrival-lologram_l7qzjs

En este lenguaje en el que las palabras, las frases y en general las ideas se expresan completas sobre círculos, no hay símbolos en el sentido humano de la palabra.  Tampoco hay una sucesión tempral de idea.  Solo patrones complejos de manchas formados con una extraña tinta que emerge de las extremidades de los extraterrestres.  Es justamente en esa estructura altamente no trivial de su lenguaje en el que radica el secreto de su conocimiento sobre el Universo.

Científicos de todo el mundo se ponen en la tarea de “romper” este aparentemente indescifrable código escrito, primero para enseñarles algunas reglas de comunicación básicas a los extraterrestres y después para preguntarles sobre el propósito de su visita.

arrival-language-2jpeg

Con la ayuda de avanzadas técnicas geométricas y topológicas, matemáticos, físicos y lingüistas del mundo lo consiguen finalmente (como lo hacen en todas las películas del género).  Pero con una sola diferencia: en Arrival (como en la vida real) en el primer intento lo hacen mal.  La primera frase que descifran según su sistema de traducción es: “ofrece arma”.

Como es obvio este mensaje (o mejor la traducción “amañada” de él) prende las alarmas entre los militares (que como en toda película de extraterrestres son los que mandan la parada en todo momento; la humanidad a la defensiva como siempre).  Por momentos parece que la película se va a convertir en un Día de la independencia más (bueno, pero con los Chinos y los Rusos a bordo), pero los creadores logran dar un giro inesperado a la historia.

El lenguaje que traen consigo les ha permitido a ellos y nos permitirá a nosotros como especie una vez lo asimilemos, percibir el tiempo de una forma diferente.  No como una sucesión de eventos, sino como un todo interconectado.  Ese es su regalo, la herramienta o el “arma” que nos vienen a ofrecer.

Con tan buena suerte que la persona que mejor entiende el código, goza ya de poderes innatos para percibir (así sea de forma vaga o en sueños) eventos futuros.  Este poder le permite a la Doctora Banks detener el inminente desenlace violento de la película y facilitar la transmisión pacífica, a través de ella, del mensaje que trae la civilización extraterrestre antes de que los aniquilemos sin misericordia.

El mensaje es entonces sencillo: nos traen el regalo de un lenguaje nuevo, universal y poderoso, que nos permitirá avanzar de formas impensables en nuestro entendimiento del Universo; todo, siempre y cuando nosotros les ayudemos 3,000 años en el futuro con algo que nunca revelan qué es (imagino que deberíamos esperar la secuela en 300 o 400 años para saberlo).

La película termina sin que se lance un solo rocket, estalle un solo helicoptero militar e incluso de que muera uno solo de los coprotagonistas.  Al contrario termina de forma pacífica justo donde comenzó, tal y como lo hacen las palabras y las frases de la lengua extraterrestre.

Como lo comentaba al principio, quede de una sola pieza al terminar la película.  Confieso que no había sido sorprendido tanto por una historia de ficción inteligente desde que tengo memoria.  Aunque esto parece un poco exagerado, les presento a continuación una lista de razones por las que considero esta como una película de extraterrestres sin parangón en la historia del cine; una joya que definitivamente cualquier fanático o científico que trabaje en el tema debería ver sin demora:

  1. La película pone de relieve que uno de los más grandes obstáculos que enfrentaremos al encontrarnos con otra civilización será entendernos.
  2. Los lenguajes que traerán otras civilizaciones, serán posiblemente como ellos mismos, totalmente inesperados.  No deberíamos esperar los rasgos comunes que vemos en los lenguajes escritos de los pueblos de la Tierra (que comparten todos la misma base biológica: el cerebro humano).
  3. Intercambiar información lingüistica con otras civilizaciones podría ser tan o más importante en nuestro encuentro como intercambiar datos o conocimientos científicos.  Tal vez en sus lenguas este la clave de su comprensión superior del Universo.
  4. Una comprensión superior del espacio-tiempo puede ser la clave para convertirnos en una civilización universal.  Es ese conocimiento el que le daba a los “heptápodos” de la película la capacidad de manipular la gravedad (que no es otra cosa que espacio-tiempo deformado), moverse sin dificultad sobre la Tierra, aparecer y desaparecer sin la vulgar necesidad de desplazarse materialmente en el espacio (la principal barrera que nos separa de otros lugares y tiempos en el Universo).
  5. Conocer el futuro, como lo logra la Doctora Banks, no haría necesariamente imposible vivir la vida.  Tal vez le agregaría un elemento de disfrute que no comprendemos todavía.

Como siempre, no todo es color de rosa.  Abajo enumero algunos asuntos problemáticos con la película cuya solución es inútil esperar, pero que es bueno reconocer:

  • El excesivo protagonismo de los militares que es común a todas las películas del género.  En un encuentro real yo esperaría que fueran autoridades civiles y científicas aquellas que estarían al frente de una situación como esta.
  • ¿Por qué no fueron los heptápodos los primeros en aprender las lenguas humanas y tuvimos nosotros que descifrar su complicada lengua?
  • ¿Cómo se logra descifrar en cuestión posiblemente de semanas una lengua que encierra secretos increíbles sobre el Universo, cuando difícilmente hemos descifrado lenguas de civilizaciones antiguas?
  • ¿Por qué el Físico Ian Donelly no le cree a la Doctora Banks cuando esta le confiesa que su hija va a morir de cáncer? ¿acaso no fue suficiente demostración de su capacidad de conocer el futuro, lograr evitar que los Chinos y Rusos atacaran a las naves extraterrestres? ¿cómo puede alejarse de ellas justamente sabiendo que la niña puede morir?

En fin.  Espero que se vengan muchas otras películas que traten como esta el tema del contacto con civilizaciones extraterrestres con menos lugares comunes e ideas realmente novedosas.

Colombia necesita ir a la Luna

“Colombia no sabe que hacer con 1.5 billones de pesos (~500 millones de dólares) que tiene para ciencia”.  Estas son las palabras que pronunció recientemente la directora de la agencia nacional de ciencias del país, Colciencias.  La “sentencia” ha caído como un baldado de agua fría sobre todos los científicos Colombianos, que al contrario de lo señalado en la lapidaria frasecita, vemos como se reducen cada año las posibilidades de financiar lo que hacemos.  ¡Yo sé que podemos hacer con esos 500 milloncitos de dólares! ¡Deberíamos ir a la Luna!; o construir un acelerador de partículas; montar una estación en la antartida; construir un satélite climatológico; o tal vez “simplemente” armar un supercomputador.  Todas estas cosas ambiciosas podrían catapultar a Colombia a la estratosfera del desarrollo científico; no en dos o cinco años (como pretende a veces Colciencias), pero si en 20.  He aquí algunas razones por las que creo que deberíamos empezar a soñar con “metas imposibles” en lugar de seguir viviendo un desarrollo dolorosamente gradual.

” ‘No necesitas ser grande para empezar. Necesitas empezar para ser grande’ (leído por ahí) #ReglasDeLaVida
Octubre 26 de 2016
http://bit.ly/trino-ser-grande

colombian-rover

Así podría lucir el primer rover lunar Colombiano. La imagen original es del rover chino Yutu (Credit: CNSA / CCTV)

El trino con el que comienza esta entrada resume muy bien la propuesta que quiero desarrollar aquí: para que Colombia haga algo importante en ciencia no puede esperar a ser grande científicamente (desarrollarse gradualmente); al contrario para ser grande lo que necesita la Colombia científica es proponerse las metas más ambiciosas.

Ir a la Luna podría ser una de ellas.

Solo imagínenlo.  Científicos de todo el país (de distintas áreas e instituciones) unidos para lanzar la primera misión interplanetaria Colombiana (un país cuya única experiencia espacial es haber lanzado un satélite del tamaño de una hamburguesa doble que emitió por unas horas beeps radiales intermitentes desde la ionosfera).

Imagine a los científicos encorbatados presentando ante el Congreso de la República la idea.  Argumentando los beneficios que a muy largo plazo tendría un esfuerzo como estos para Colombia.  Mostrando el modo en el que la incipiente industria tecnología del país se catapultaría hasta alcanzar niveles impensables al enfrentarse a retos verdaderamente difíciles, tales como los de construir dispositivos electrónicos para trabajar en las adversas condiciones del espacio.

Imagínese lo inimaginable: el crecimiento de otras industrias antes reservadas solo para los países más ricos y desarrollados tecnológicamente.  La industria electrónica, la de materiales, la de combustibles aeroespaciales, la industria de sensores e imágenes, la industria de software científico, la industria de automatización avanzada, la industria óptica, la industria criogénica, etc.

Imaginen la escena de una bandera del país adherida a la superficie de aluminio de un rover u ondeando con la vibración producida por el movimiento sobre el irregular terreno lunar.  Imaginen las primeras fotografías descargadas por gigantescas antenas de radio instaladas en las silenciosas llanuras del Guaviare o el Vichada y analizadas en una estación de control construída en las afueras de Bogotá.  Imaginen a los astrónomos paisas, a los geólogos costeños, a los heliofísicos bogotanos, recibiendo los primeros datos enviados por los sensores del rover lunar colombiano.  Datos enteramente colombianos.

Soñar no cuesta nada, dirán los más realistas.  Habrá que recordarles a todos, sin embargo, que en 1962, cuando Estados Unidos soñó con enviar un hombre a la Luna, la experiencia que tenía en viajes espaciales tripulados era casi completamente nula.  Esta bien: sabían lanzar cohetes (aunque no muy bien todavía), habían mandado a un piloto en un vuelo suborbital un año antes y el hombre que más sabía del tema estaba entre sus científicos (Werner Von Braun).  Pero este era un reto tecnológico completamente nuevo.  Las dificultades que implicaba eran alucinantes.  El costo incalculable.  Como todos recordaran en 1969 lo lograron.  Hoy son la potencia espacial y científica más grande de la Tierra (y de la historia).

A diferencia de 1969, ir a la Luna hoy no es tan difícil.  Varios países lo han hecho ya, aprendiendo por nosotros las lecciones que le costarían mucho a un país como Colombia aprender (mientras gasta recursos incalculables).  Naturalmente, esos países no estarán dispuestos a compartir con Colombia sus secretos ¿o si?.  Hay que recordar, sin embargo, que vivimos en un mundo diferente al de la década de los 60, un mundo más abierto, un mundo en el que la información circula más libremente.  A eso debería sumarse la “simpatía” que despierta que un país en vías de desarrollo busque metas realmente ambiciosas; un país que lucha contra sus ciudadanos más abyectos por conseguir la paz y mantenerla en el tiempo.  Esta simpatía podría valernos la colaboración de decenas de países y agencias espaciales del mundo.

Pero ¿el costo? ¿podría Colombia asumirlo?.  Aquí entra la cita de la directora de Colciencias: ¿serán suficientes 500 millones de dólares?.  Según datos del gobierno Chino (el último en hacer posar suavemente un vehículo espacial en la Luna) una misión robótica lunar cuesta $140 millones de dólares (que abreviare en lo sucesivo U$140M).  Bueno, sin contar con otros cientos que costaría la infraestructura espacial en Tierra o pagarles a los mismos Chinos, a los Rusos o a los gringos para que nos pongan el vehículo en el espacio (yo no sueño con que tengamos nuestro propio Baikonour o un Cabo Cañaveral en la Guajira… bueno, no todavía).

Yo sé que están pensando: “¡Colombia no va a ir a la Luna!  Este es solo el sueño de un astrónomo colombiano muy optimista”.  Pero no pueden negarme que nos alcanzaría la plata y hasta sobraría un poco para otros proyectos menos ambiciosos.  Tampoco pueden dejar de reconocerme que de proponernos ir a la Luna el beneficio científico y tecnológico sería enorme y no solo en áreas como la ciencia aeroespacial (incipiente en nuestro país) ¡lo sería en casi todas las áreas del conocimiento!

aceleradordeparticulas-colombiano

Colombia tiene terrenos y plata suficiente para construir su primer sincrotrón operativo. El de la fotografía es el Diamond Light Ring en el Reino Unido. Crédito: Diamond/UK.

Que tal entonces si en lugar de ir a la Luna construimos un acelerador de partículas, algo así como un LHC criollo.  ¿Se imaginan?

Tomamos una extensa llanura no inundable en Boyacá o Cundinamarca (podría también ser en Córdoba o el Meta); sobre ella construímos una instalación avanzada para acelerar protones y electrones casi hasta la velocidad de la luz, usando un gigantesco tubo de 500 metros de diámetro lleno de magnetos superconductores y tuberías criogénicas.  Todo tal vez a tan solo unos kilómetros de la pista automovilistica de Tocancipa o no muy lejos de algún pueblito pintoresco boyacence o llanero.

Toda la comunidad científica estaría implicada en la construcción del acelerador de partículas, llamado también por los nerds Sincrotrón. Los biólogos nacionales estudiarían con los rayos X producidos por las partículas subatómicas aceleradas en una llanura de Boyacá, las estructuras minúsculas de insectos y aves zancudas propias de nuestro país.  Científicos de materiales harían lo propio con nuevos materiales diseñados para la industria de energía renovables.  Ingenieros de alimentos estudiarían la estructura microscópica de los helados producidos por la industria nacional para producir “paletas de exportación”.  Los físicos, felices, perfeccionarían sistemas de refrigeración para los magnetos superconductores, montarían nuevas industrias que ofrecerían servicio de diseño y mantenimiento de los sofisticados equipos del sincrotrón colombiano, estudiarían procesos fundamentales, etc. En síntesis serían los más felices.

Todo sin contar que la construcción movilizaría la industria nacional en un torbellino de intercambio tecnológico sin precedentes con industrias de avanzada de todo el mundo, que otra vez y con el apoyo de sus gobiernos, estarían más que dispuestos a ayudar al “pequeñito” que se asoma al futuro después de un conflicto armado de 50 años.

“¡Pero esto es solo un sueño!”, dirán los más escépticos, “algo que solo podría financiar un país desarrollado”, murmuraran los realista;  “¡los costos deben ser exorbitantes!” se lamentará la mayoría.   Pero no.  Según datos del gobierno Británico construir un sincrotrón de avanzada podría costar U$300M (menos de $1 billón de pesos o el 0.3% del PIB actual de Colombia).  Pero un sincrotrón adaptado a nuestras necesidades podría no valer más de U$100M, algo que esta perfectamente al alcance del “desperdiciado” (según Colciencias) presupuesto para investigación científica de Colombia.

supercomputador-colombia

Así podría verse el primer supercomputador colombiano. En la imagen se ve en realidad el Leibniz Supercomputer Center en Alemania con 150,000 procesadores, el décimo más rápido del mundo. Crédito: SuperMUC.

Si las anteriores propuestas podrían parecer muy restrictivas y beneficiar a una “pequeña” fracción de la comunidad científica nacional (solo según una más pequeña fracción de esa comunidad que no tendría la creatividad para participar en esos dos proyectos) hay todavía un proyecto al que seguramente casi nadie se opondría.

Construyamos un supercomputador para Colombia.

Solo necesitamos unos U$100M para construirlo, más unos U$7M anuales (U$70M por década) para alimentarlo con electricidad y agua.  En un país lleno de agua, no dudo que nos sobraría para refrigerar a este pequeño monstruo.

Podemos instalarlo en algún lugar entre las montañas de Antioquia, tal vez con una pequeña central hidroeléctrica propia.  Desde allí saldrían largos cables de fibra óptica que recorrerían el país para conectar al “leviatan de silicio” con centros de computo satélites más pequeños ubicados en Medellín, Bogotá, Cali y otras capitales científicas del país.

¿Pero quién podría beneficiarse de un aparatejo de esos?  ¡Pregunta equivocada!.  ¿Quién no? sería más correcto decir.

Teniendo a disposición una capacidad casi ilimitada de computación y almacenamiento, petaflops y petabytes dicen los entendidos, podríamos simular el casi intratable clima del país para predecir sequías e inundaciones. Crear y analizar la más grande base de datos de la biodiversidad del país (una de las mayores del mundo). Diseñar vehículos más seguros apoyándonos para ello de la inteligencia conjunta de miles de computadores.  Pero también crear nuestras propias simulaciones cosmológicas o analizar los datos del LHC, ambos objetivos casi tan importantes para el desarrollo del país como aquellas aplicaciones que creemos más cercanas a nuestras vidas.

¿Y que tal si nos proponemos hacer las tres cosas al mismo tiempo?

Estos 1.5 billones de pesos que los científicos nacionales no hemos podido gastar según Colciencias, representan poco menos del 1% del PIB ANUAL de nuestro país (U$370M).  Si después de obtener cualquiera de los anteriores jugueticos, quisiéramos seguir invirtiendo en ambiciosos proyectos científicos, a los biólogos, físicos, astrónomos, geólogos Colombianos, contrario a lo que piensa Colciencias, nos sobran ideas.

He aquí las que a mí se me ocurren:

  • Un complejo de observatorios astronómicos profesionales de alta montaña.  U$50M.
  • Una estación científica colombiana en la antártida. U$10M
  • Un satélite con carga científica (satélite meteorológico o de observación de la tierra, telescopio espacial). U$50M.
  • Participar de una colaboración científica internacional (ESO, LHC).  $200M.
  • Construir un observatorio ecuatorial de rayos cósmicos.  U$50M.
  • Construir una flotilla de buques de investigación oceanográfica.   U$50M.
  • Instalar un radiotelescopio gigante entre las montañas.  U$180M.

Es claro que también podemos atomizar esos U$500M en 5,000 proyectos (que es lo que hemos hecho hasta ahora).  Pero seguiríamos siendo un país chiquitico, chiquitico, lleno de científicos con un ego gigante, gigante, con una gobierno tacaño, tacaño, que entrega sus limosnas a través de una agencia nacional miope, muy miope.

El álbum de Juno

Después de 55 largos días al fin la sonda Juno pasó por su segundo perijove (el punto más cercano a Júpiter) y el primero con sus instrumentos encendidos y recogiendo valiosos datos sobre el Gigante líquido.  Con el temor de volverme “monotemático” hablando sobre mi nueva sonda favorita en un blog en el que debería hablar acerca de muchas otras cosas, les presento aquí el album de fotografías y datos que esta compilando Juno en su fascinante misión de “redescubrimiento” del planeta gigante.  Mantendré actualizada esta página durante lo que dura la misión.  ¡Manténganse sintonizados!

(Esta entrada corresponde al lanzamiento dentro del sitio de una nueva página con su mismo nombre y que estará siendo actualizada a medida que lleguen los datos.  No han pasado ni 30 minutos del lanzamiento de esta entrada y ya se publicaron nuevas imágenes y videos en la página.  ¡Vaya ya allí!)

 

Aurora austral de Júpiter en infrarrojo tomada por Juno durante su segundo perijove. Crédito: NASA/JPL-Caltech


Agosto 27 de 2016
.  Aurora infrarroja en el polo sur de Júpiter.

En una entrada reciente (¡Juno llegó! ¿ahora qué?) me lamentaba sobre el hecho de que pasarían muchas semanas y hasta meses antes de que nosotros, los impacientes seguidores de la exploración espacial y amantes de los planetas con sex appeal, pudiéramos ver las primeras imágenes y (los más ñoños) los primeros datos de la sonda.

Pues bien, como lo anuncié en esa entrada, el día esperado al fin llegó: el 27 de agosto de 2016 Juno se zambullo nuevamente dentro del profundo “pozo” gravitacional de Júpiter, pero en lugar de hacerlo con los “ojos” cerrados (como lo hizo cuando llegó el 4 de julio) esta vez lo hizo con todos sus “sentidos” en modo “sorpréndeme Júpiter”.

Los datos recabados en este, el segundo perijove de casi 40 que tendrá en su periplo alrededor de Júpiter, fueron transmitidos a la Tierra en los días siguientes, pero solo apenas ayer (3 de septiembre y no el 29 de agosto como se los “prometí” en el cronograma de hace unas semanas), fueron revelados por los encargados de la misión (como decimos en Colombia, ¡muchos angurriosos!).

Quiero compilar aquí un album comentado de fotografías y datos (los que pueda, los que más me gusten o simplemente los que nos suelten los patrones de Juno) enviados por la sonda a lo largo de la misión.  A mí siempre me gustaron las fotos familiares que tienen por detrás un comentario personal de los protagonistas, la mamá o el papá.  Quiero hacer algo parecido con estas fotos, aunque yo no tenga ninguna cercanía con la misión (excepto la de ser un “vuoyerista espacial” que trabaja profesionalmente en ciencias planetarias).  Cada foto vendrá acompañada de un dato científico, una reflexión o simplemente un “Wow!”.

En esta primera versión del álbum encontrarán las fotografías, videos y datos de lo que va de la misión hasta ahora, incluyendo los revelados en este segundo perijove.  En las semanas y meses por venir espero ir mostrando las que serán seguramente las más espectaculares vistas y datos tomados sobre Júpiter hasta ahora.

A diferencia de un álbum familiar, las fotos en este álbum están ordenadas en sentido cronológico inverso (primero las más recientes).


Septiembre 30 de 2016
.  En esta composición en video se puede apreciar de manera más clara la visión que tenía Juno desde su posición privilegiada en una elongada órbita alrededor de Júpiter.

Aurora austral de Júpiter en infrarrojo tomada por Juno durante su segundo perijove. Crédito: NASA/JPL-Caltech


Agosto 27 de 2016
.  Aurora infrarroja en el polo sur de Júpiter. Nunca nadie había visto este lado del planeta (desde la Tierra es imposible y las sondas que lo habían fotografiado antes no tuvieron la oportunidad). La foto fue tomada horas después del perijove del 27 de agosto.


Agosto 27 de 2016
.  El turbulento polo norte de Júpiter.  Otra vista sin precedentes de la turbulenta atmósfera cerca a los polos del planeta.  En estas regiones no hay grandes bloques de hielo como en la Tierra pero si enormes remolinos turbulentos de Hidrógeno.


Agosto 27 de 2016
.  Si de turbulencias se trata, el polo sur no se queda atrás.  En esta foto a la que se ha superpuesto una retícula de latitud y longitud joviana se ve como la atmósfera cambia “subitamente” a los 55 grados de latitud sur, de una “tranquilas” franjas horizontales a un “despelote” turbulento en latitudes más altas.

Agosto 27 de 2016.  ¿Por qué conformarnos con imágenes si podemos escuchar las auroras polares?.  En este video se muestra el “espectro” (frecuencia, intensidad y tiempo) de las ondas radio kilométricas recibidas por Juno durante su sobrevuelo al planeta. El sonido es el que percibiríamos si pudiéramos “escuchar” estas ondas de radio.  El tono de los sonidos es proporcional a su frecuencia de radio (que originalmente es de miles de Hz), la intensidad también.  El tiempo sin embargo ha sido comprimido cientos de veces en tanto la grabación cubre un rango de unas 12 horas.


Agosto 27 a agosto 28 de 2016
.  Así habríamos visto la aproximación de Juno a su segundo perijove si hubiéramos estado en la nave.  La sonda se aproxima desde “arriba” (el norte) dejándose caer como si se la fuera a tragar el gigante.  Naturalmente sale por el sur demostrando que sobrevivió.  Sobresale la gran mancha roja que no parece moverse de su lugar en las decenas de horas que dura este periplo a pesar de la gran rotación del planeta.  La razón es simple: las imágenes fueron tomadas aproximadamente cada 10 horas, justamente el período de rotación de Júpiter, lo que hace que la mancha vuelva a estar en su lugar para cada “selfie”.

 

¡Juno llego! ¿ahora qué?

planetaTres días después de la inserción de Juno en órbita alrededor de Júpiter, el interés por la llegada de la sonda al planeta, aún después de más de mil millones de dólares en inversión, un viaje de miles de millones de kilómetros y 5 años o cerca de 150 millones de segundos de soledad en el vasto espacio interplanerio, se va extinguiendo.  Como en todas las misiones de su tipo la excitación inicial va dando paso a un sentimiento de expectativa e incluso de impaciencia: “bueno pues, ahora que llegó ¿cuándo nos van a mostrar las primera fóticos?”.  Yo soy uno de esos impacientes que no ve la hora de que el equipo de Juno nos empiece a soltar las primeras “golosinas”.  Pero sé que eso no va a ocurrir pronto y es por eso que escribo esta entrada, en parte como una terapia para mi propia impaciencia y en parte para informar a otros impacientes sobre lo que sigue en la misión de la sonda.  Espero encuentren el descanso que merecen.

Aquí esta Juno hoy, 7 de Julio de 2016. Una vista obtenida por el excelente software que NASA ha desarrollado para que podamos seguir de cerca esta y otras misiones interplanetarias, NASA Eye’s. El software es gratuito y puede descargarse tanto para Windows como para Mac.

La pregunta que se hace medio mundo hoy sobre la sonda Juno es ¿cuándo vamos a ver la primera fotico?.  Atrás quedo el interés por la llegada; en pausa están las preguntas más profundas de qué vamos a aprender o qué secretos nuevos nos revelará la sonda.  La mayoría solo queremos saber cuándo empezaremos a ver cosas bonitas.

Lo más ñoños no vemos la hora de ver aunque sea uno de esos diagramas incomprensibles mostrando la intensidad del campo magnético como función de la distancia o la densidad de partículas de alta energía convertidas en sonido. ¡Cualquier cosita es cariño!

Pero todo parece indicar que nos va a tocar esperar un ratico.  Si bien en otras misiones interplanetarias los científicos e ingenieros de la misión, que también tienen mamá, tíos intensos y colegas impacientes, nos han regalado algunas golosinas antes de tiempo, no sabemos si en el caso de Juno la cosa será parecida o si se apegaran de forma juiciosa al itinerario que describo abajo.

Diseño de las órbitas de Juno durante su estadía cerca al planeta. En verde se muestran las "órbitas de captura", es decir las que realiza después de su inserción en órbita joviana (JOI, Jupiter Orbit Insertion). En azul claro las órbitas en las que se estará haciendo ciencia. Los segmentos azules más oscuros corresponden a las maniobras de reducción de período (PRM, Period Reduction Maneuvers). También se muestran en verde, hacia el final de la misión, las dos órbitas previas a la caída programada de la nave sobre las nubes de Júpiter (deorbit). Crédito: NASA/JPL.

Diseño de las órbitas de Juno durante su estadía cerca al planeta. En verde se muestran las “órbitas de captura”, es decir las que realiza después de su inserción en órbita joviana (JOI, Jupiter Orbit Insertion). En azul claro las órbitas en las que se estará haciendo ciencia. Los segmentos azules más oscuros corresponden a las maniobras de reducción de período (PRM, Period Reduction Maneuvers). También se muestran en verde, hacia el final de la misión, las dos órbitas previas a la caída programada de la nave sobre las nubes de Júpiter (deorbit). Crédito: NASA/JPL.

Entonces ¿qué sigue a continuación?  Veamos hora a hora, día a día, mes a mes lo que hará Juno a continuación, para que podamos ajustar nuestras expectativas.

Pero primero algunos términos para entender mejor la información:

  • UTC-5.  Todos los tiempos están dados en tiempo de Colombia que corresponde en esta época del año con el Tiempo Central de Estados Unidos (CST) o simplemente esta 5 horas antes que el tiempo de Greenwich (UTC).
  • Perijove, Apojove, este es el nombre que le dan los “navegadores espaciales” al punto más cercano y más lejano de una órbita alrededor de Júpiter.  La mayor parte de la acción ocurre cerca al Perijove así que tome nota.
  • JOI, Jupiter Orbital Insertion.  Maniobra de inserción de la nave desde una órbita heliocéntrica (alrededor del Sol) a una órbita alrededor de Júpiter.  Esta fue la maniobra de la que fuimos testigos el 4 de Julio.
Eventos específicos sobre las órbitas de captura. En la figura PJ significa "Perijove" (punto de máxima aproximación), "AJ" apojove (punto de máximo alejamiento).

Eventos específicos sobre las órbitas de captura. En la figura PJ significa “Perijove” (punto de máxima aproximación), “AJ” apojove (punto de máximo alejamiento). Crédito: NASA/JPL

 

Tiempo JOI Fecha y Hora Evento ¿Datos o Imágenes?
35 minutos Julio 4,
22:53 UTC-5
Termina la maniobra de inserción en órbita alrededor de Júpiter.  Todos los instrumentos están apagados para evitar cualquier avería durante el encendido del motor principal. Ninguno
 50 horas Julio 7,
1:00 UTC-5
Se encienden los instrumentos científicos y empiezan a adquirir datos. Inicia una fase de calibración de los instrumentos que dura mientras la nave se encuentra en las órbitas de captura. Ojalá
24 días Julio 31,
14:42 UTC-5
La nave alcanza su primer apojove en la “órbita de captura”.  Este es el punto en el que estará más lejos de Júpiter durante la totalidad de la Misión: 114 veces el radio del planeta. En esta fase todos los instrumentos de la sonda se ponen alertas para recoger datos durante la aproximación al gigante. Ojalá
 53.4 días Agosto 27,
7:51 UTC-5
La nave alcanza su primer perijove en la órbita de captura.  Si bien no se supone que Juno empiece a hacer ciencia en esta etapa, se espera que los científicos de la misión realicen las primeras pruebas con los instrumentos cerca a Júpiter. Antes de la llegada al perijove de esta órbita, JunoCam posiblemente envíe las primeras imágenes detalladas del planeta en su aproximación.  Se esperan especialmente imágenes del polo norte del gigante.  En este perijove la nave estará a tan solo 4,150 km de las nubes más altas. ¡Si!
 53.5 días Agosto 27,
11:51 UTC-5
Termina la fase de recolección de datos de la primera órbita de captura, que comenzó 4 horas antes del perijove.  A partir de este momento la nave empezará a enviar los valiosos datos recabados en este primer paso. ¡Paciencia!
 56 días Agosto 29 Las imágenes y datos más espectaculares tomados por la sonda en su máxima aproximación en la primera órbita de captura posiblemente sean revelados durante estos días al público.  Este es el día que todos estamos esperando. Advertencia: podría no pasar nada, todo depende del valor de los datos recabados (si son muy valiosos estarán bajo “embargo”, es decir solo los podrán ver los científicos de la misión). Aún así esperamos que nos suelten alguna cosita. ¡Si!
102 días Octubre 14 Días antes de la maniobra de reducción del período, los instrumentos son apagados nuevamente para evitar cualquier daño durante la encendida del motor.  Esperamos que por aquellos días se revelen datos recogidos durante esta, la segunda órbita de captura. Ojalá
107 días Octubre 19,
13:00 UTC-5
Se enciende nuevamente el motor de la nave para realizar la maniobra de reducción del período (PRM).  Esta es la segunda maniobra crítica de la misión y la final antes de insertarse en la trayectoria final en la que permanecerá hasta febrero de 2018. ¡ojalá todo salga bien! Ninguno
121 Noviembre 2 El primer perijove en una órbita de ciencia.  ¡Comienza la acción! Ojalá
122 Noviembre 3 A partir de este momento todo los seres humanos podremos participar en la decisión de qué partes de la atmósfera de Júpiter observar durante los próximos perijoves.  Esta es una campaña divulgativa dirigida especialmente a escuelas de todo el mundo.  Este es el sitio de JunoCam: https://www.missionjuno.swri.edu/junocam. ¡Sí!
121 Febrero 20 (2018),
6:39 UTC-5
Juno muere en medio de las nubes de Júpiter Ya todo esta consumado

Si me alcanzan las ganas y el tiempo, estaré actualizando esta tabla con nuevos eventos o corrigiendo los tiempos de los eventos descritos.  ¡Manténgase sintonizado!

Tramos de las órbitas durante las aproximaciones al planeta en la fase de ciencia de la misión. Las trayectorias están dibujadas desde un sistema de referencia que rota con el planeta. Por eso tienen esta curiosa forma

Tramos de las órbitas durante las aproximaciones a Júpiter en la fase de ciencia de la misión. Las trayectorias están dibujadas desde un sistema de referencia que rota con el planeta. Por eso tienen esta curiosa forma. Crédito: NASA/JPL/Caltech.

Para saber más:

Júpiter para Curiosos

Después de 5 años y 35 minutos de “apretar el asterisco”, los científicos y técnicos de la misión Juno al planeta Júpiter han podido al fin descansar.  La nave se encuentra a esta hora “parqueada” comodamente en una elongada órbita alrededor del planeta, esperando los próximos “perijoves” para empezar a hacer un montón de ciencia.  Lo que es a mi como divulgador científico y maestro por igual, me encanta utilizar datos curiosos para acercarnos a la ciencia y en este caso para que entendamos la importancia que para todos en el mundo de las ciencias planetarias tiene esta misión.  He aquí una colección de datos curiosos sobre Júpiter, sus lunas y naturalmente sobre la sonda Juno que compile el día de la llegada de la nave al planeta.  Como siempre mis seguidores en twitter (los de verdad y los de mentiras) los leyeron primero allí.  Aquí los reproduzco agregando uno que otro detalle que no me cupo en 140 caracteres

“¡Hoy es día de #Jupiter! En lo sucesivo y hasta que se apaguen los quemadores de #Juno voy a soltar datos curiosos sobre el planeta y la misión
Julio 4 de 2016
http://bit.ly/trino-datos-jupiter

Ir rápido: Una imagen dice más que mil palabras1,000 TierrasSorpresasAuroras volcánicas. Júpiter mortalCámara fritaMisión suicidaLa patadita de la buena suerteJEDIHumedad en JúpiterJúpiter, un lugar “oscuro”Una forma anormal. Radiografiados por Júpiter. Miel de Júpiter. Enfant Terrible. Jupiter FM. La constelación magnética. Dínamo. Auroras a unos kilómetros. Auroras en esteroides. Una aplastante realidad.

Una imagen dice más que mil palabras

¿De qué tamaño es #Jupiter y su mancha roja? (¡fantástica animación de @PlanetarioMed!)
http://bit.ly/29kgKvt

Crédito: Planetario de Medellín

Crédito: Planetario de Medellín

1,000 Tierras

#Jupiter tiene un volumen 1421 veces mayor que la Tierra pero en él cabrían solo 901 Tierras
¿por qué?
http://bit.ly/29OCIaP

Crédito: Mark Garlick/Science Photo Library. Tomada de: Discover Magazine

Crédito: Mark Garlick/Science Photo Library. Tomada de: Discover Magazine

Este es un asunto un poco truculento.  Estamos acostumbrados a escuchar en astronomía, a veces, que el Sol es 100 veces más grande que la Tierra y otras que es millones de veces mayor ¿cuál es la verdad?.

Es importante que al comparar cuerpos astronómicos (o terrestres) siempre aclaremos si estamos comparando su tamaño (diámetro, radio, lado), su volumen o su masa.  Por ejemplo Júpiter tiene un tamaño (diámetro) 11.2 veces mayor que el de la Tierra.  Esto quiere decir que si se pone a Júpiter en una mesa habría que poner 11.2 Tierras una encima de la otra para igualarlo en “altura”.

Pero ¿cuántas tierras caben adentro de Júpiter?.

Un cuerpo esférico con un diámetro 11.2 veces mayor que la Tierra tiene un volumen aproximadamente 1400 veces mayor.  Eso significa que si fundiéramos la roca de ~1400 Tierras podríamos hacer una bola de roca fundida del tamaño de Júpiter.  Pero no significa que podamos acomodar las 1400 pelotas dentro de una esfera hueca con el tamaño del planeta.  Si se ponen una encima de otra las esferas dejan espacios vacíos entre ellas.  Como resultado, después de acomodar 1400 Tierras el volumen ocupado por ellas sería mayor a 1,400 veces el volumen de cada esfera. ¿Ven el problema?

Fue Johannes Kepler el primero en proponer una solución al problema.  Según Kepler si se acomodan con cuidado esferas, una encima de la otra en una configuración conocida como “cúbica centrada en la cara” (ver imagen abajo) del volumen ocupado por todo el conjunto solo el 74% sería ocupado por las bolas.  Sin embargo acomodar cientos de esferas una encima de otra en un arreglo tan ordenado sería más que una hazaña.  Si al contrario las lanzamos al azar adentro de una esfera hueca del tamaño de Júpiter, del volumen total de la esfera solo el 64% sería ocupado por las bolas más pequeñas.

Naranjas acomodadas de la forma más compacta según Kepler y acomodadas al azar

Naranjas acomodadas de la forma más compacta según Kepler y acomodadas al azar

En conclusión si usamos 64% x 1400 es decir unas 900 Tierras podríamos llenar el interior de Júpiter.  Pero si nos esforzamos con la paciencia de monje Tibetano podríamos acomodar hasta 75% x 1400 Tierras adentro del gigante, es decir casi 1,000 Tierras o 100 más que en el caso anterior.

Sorpresas

Cada misión a #Jupiter ha traído sorpresas: Pioneers, planeta líquido; Voyagers, anillos; Galileo, ¿poca agua?
http://bit.ly/29kh39y

Júpiter ha sido visitado por más de 6 sondas desde los años 70; la mayoría de ellas simplemente sobre volaron el planeta.  ¿Quién no recuerda las imágenes espectaculares de las Voyager que conocimos por estas latitudes en los años 80? Solo una de ellas (además de Juno por supuesto) se parqueo a su lado y estudio en detalle el planeta y sus lunas, la nave Galileo.  De todas hemos recibido detalles que no nos esperábamos.  Si bien en el trino original mencione que las Voyagers nos habían revelado la existencia de los anillos, mi buen amigo Julian Mauricio Arenas me corrigió.  Fueron las Pioneers las que descubrieron los anillos.  Las Voyagers nos trajeron otros secretos como por ejemplo la existencia de volcanes activos en la superficie de Io.  Estamos ansiosos por conocer los secretos que nos enviara Juno.

Auroras volcánicas

A diferencia de la Tierra, las partículas responsables de las auroras en #Jupiter son de Io y no del Sol  http://bit.ly/siderofilia-jupiter
http://bit.ly/29qLo86

Auroras de Júpiter en Ultravioleta. Crédito: NASA/HST

Auroras de Júpiter en Ultravioleta. Crédito: NASA/HST

El enlace en el trino apunta a una entrada de mi blog Siderofilia de Investigación y Ciencia que escribí a propósito del impresionante campo magnético de Júpiter.  La imagen arriba no acompañaba el trino original.

Júpiter mortal

Si viajaras al lugar donde esta #Juno hoy sin protección, morirías en menos de 1 hora
http://bit.ly/29xuqYE

Radiación en Júpiter

Los niveles de radiación en los cinturones de radiación de Júpiter dentro de los que se estará moviendo Juno pueden producir en casi cualquier cuerpo que pongamos allí una deposición de energía de varias decenas de millones de rads.  1 rad equivale aproximadamente a 0.002 calorías de radiación absorbidas por kilogramo.  Se calcula que una exposición sostenida de 200 rad empieza a producir quemaduras en la piel.  Los “rem” de la figura son unidades sutilmente diferentes a los rads.   Sin embargo para el cuerpo humano una exposición de 1 rem equivale aproximadamente a 1 rad.

Cámara frita

#JunoCam q’tomará las mejores fotos d’#Jupiter, se “freirá” por la radiación después de solo 7 órbitas
http://bit.ly/29u2fs0

Fotos de la JunoCam tomadas en el sobrevuelo de Juno a la Tierra en 2013

Fotos de la JunoCam tomadas en el sobrevuelo de Juno a la Tierra en 2013

Las primeras fotos que recibamos de Júpiter serán tomadas por la JunoCam, la única cámara en luz visible a bordo de Juno.  La cámara que tiene propósitos más de divulgación que de investigación científica, fue probada en su sobrevuelo a la Tierra (al recibir de nuestro planeta la patadita final que necesitaba para alcanzar a Júpiter) en el año 2013.  Lo triste es que los diseñadores calculan que la electrónica de la cámara se irá deteriorando por la exposición a la radiación a medida que avance la misión.  ¡Esperamos que se equivoquen!

Misión suicida

Hablamos del inició de #JunoMission, pero ¿cómo terminará?. ¡se suicidará dentro de #Jupiter!
http://bit.ly/29iQ26G

Es interesante anotar que una de las razones por las cuáles los diseñadores de la misión decidieron lanzarla a las nubes del planeta en lugar de dejarla vagar, tal vez frita por la radiación, alrededor del planeta por años, es el riesgo de contaminar sus lunas con “polizones” biológicos que puedan estar atrapados entre los fierros de la nave (obviamente en estado de hibernación microbiana).  ¡Muy cuidadosos!

La patadita de la buena suerte

#Juno recibió un empujón de la Tierra de 7 km/s. Nuestro planeta perdió 1 trillonesima de m/s
http://bit.ly/29u48Fo

JEDI

#Juno lleva a bordo un JEDI* para q’le ayude con la “Fuerza” (*Jupiter Energetic particle Detector)
http://bit.ly/29qUkKC

El sensor JEDI de partículas que lleva Juno

El sensor JEDI de partículas que lleva Juno

El JEDI es el sensor que nos ayudará a entender mejor el ambiente de radiación de Júpiter.  Es único en tanto permite capturar partículas de mucha energía provenientes de distintos ángulos al mismo tiempo.  Vamos a ver que nos dice sobre el medio ambiente de Júpiter.

Humedad en Júpiter

Es todavía un misterio cuánta agua, carbono o nitrógeno hay dentro de #Jupiter ¡#Juno ayúdanos!
http://bit.ly/29qUBNK

La cantidad de agua dentro de Júpiter es un misterio

La cantidad de agua dentro de Júpiter es un misterio.  Crédito: Markus Reugels / Rex Features

En los años 90 cuando una sonda atmosférica enviada por el orbitador Galileo se sumergió en la atmósfera encontró menos agua de la que esperaban los expertos jovianos.  Júpiter se formo muy lejos del Sol y debería contener grandes cantidades de agua y otras sustancias volátiles.  Hoy no sabemos si fue un golpe de mala suerte (si la sonda cayo en un sitio de la atmósfera de Júpiter particularmente seco) o si es el estado general de la atmósfera del planeta.  Juno nos ayudará a resolver el misterio.

Júpiter, un lugar “oscuro”

Con los enormes paneles solares de #Juno a la distancia de #Jupiter se pueden encender… 5 bombillos
http://bit.ly/29qW7zq

Los enormes paneles de Juno en el laboratorio antes de ser lanzados

Los enormes paneles de Juno en el laboratorio antes de ser lanzados

Juno no es una nave con paneles solares sino más bien unos paneles solares con instrumentos científicos. Las grandes aspas que caracterizan la nave le garantizan la energía necesaria para operar en el espacio.  A diferencia de otras sondas jovianas, Juno es la primera que no lleva baterías nucleares en su periplo.  Toda su energía viene del Sol.  Pero a la distancia de Júpiter el brillo del Sol es casi 25 veces menor que en la Tierra, lo que hace más complicado la operación de una nave hambrienta de energía.

Una forma anormal

La órbita de #Juno no es una elipse normal (precesa) porque #Jupiter no tiene una forma normal
http://bit.ly/29hVDtd

La órbita de Juno no se cierra sobre si misma debido a la forma del planeta

La órbita de Juno no se cierra sobre si misma debido a la forma del planeta

Desde la escuela nos enseñan que todos los cuerpos astronómicos pequeños dan vuelta alrededor de los más grandes en perfectas órbitas elípticas (ovaladas), que se repiten hasta la eternidad, tal y como lo demostró Newton hace unos de 350 años.  No ese es el caso de las órbitas de las naves como Juno que se aproximan a gigantes achatados como Júpiter.  Al no ser completamente esféricos sus campos gravitacionales no son tan perfectos como se los imagino Newton y de la misma forma las órbitas son imperfectas también.

Júpiter es casi 10% más pequeño en los polos que en el ecuador

Júpiter es casi 10% más pequeño en los polos que en el ecuador

Radiografiados por Júpiter

De modo que quisieras estar donde estará #Juno hoy…
http://bit.ly/29hZXNt

Radiación en Júpiter

Unas horas en los cinturones de radiación de Júpiter, entre los que se estará moviendo Juno en los próximos meses, equivalen a tomarse 100 millones de radiografías dentales.  ¡Mejor nos quedamos en casa!

Miel de Júpiter

La densidad media d’#Jupiter es aproximadamente la misma del Sol y de la miel de Maple
http://bit.ly/29xI0Lu

Densidad media de Júpiter

Si metes a Júpiter en un recipiente gigante (de dimensiones astronómicas literalmente) y lo revuelves con fuerza por mucho tiempo (como preparando una natilla ¡pero aún más!), la sustancia resultante tendría la misma consistencia de la miel.  Es importante aclarar que no es que esa sea la consistencia del interior del planeta, que es más denso que eso por la presión.  Como me decía alguien en twitter, Júpiter es literalmente un buen destino para planear una “luna de miel”.

Enfant Terrible

Cuando #Jupiter nació era dos veces más grande de lo que lo vemos ahora
http://bit.ly/29iVnLa

Júpiter en el pasado

A diferencia de la Tierra que esta hecha de “fluidos” relativamente incompresibles (no “incomprensibles”, ¡pilas!), Júpiter se ha venido comprimiendo desde que nació.  Lo hace actualmente a un ritmo de 2 centímetros por año, aunque mide de lado a lado 140 millones de centímetros de modo que no lo veremos desaparecer pronto.  Al comprimirse se calienta y ese calor lo emite en la forma de luz infrarroja.  La cantidad de luz que produce de esa forma es más o menos igual a la que le llega desde el Sol.  En comparación la cantidad de calor que produce nuestro planeta (principalmente por la radiactividad de sus rocas) es 1,000 veces menor que la que recibe del Sol.

Jupiter FM

#Jupiter es la segunda estación de radio más poderosa del Sistema Solar
http://bit.ly/29xJQMr

Las ondas de radio son producidas por partículas cargadas (principalmente electrones) que se mueven en bucles en el campo magnético del planeta.  Fue precisamente observando estas ondas de radio que supimos antes de que llegará cualquier nave, que Júpiter tenían un poderoso campo magnético.

La constelación magnética

Si pudiéramos ver la magnetósfera de #Jupiter en el cielo esta noche ¡sería más grande que la luna!
http://bit.ly/29xLy0p

Estamos hablando de ver un “cuerpo” situado a más de 700 millones de kilómetros de la Tierra ¡nada más miren el tamaño de esto visto en el cielo!  Y eso sin mencionar que la cola de la magnetosfera va hasta más allá de Saturno de modo que en ciertas condiciones la magnetosfera podría cubrir buena parte del cielo nocturno.

Dínamo

Después de #Juno el dínamo de #Jupiter (donde nace su magnetismo) será el mejor entendido de Sistema Solar
http://bit.ly/29nJZkH

Dinamo de Júpiter

Simulación que muestra la compleja estructura del dínamo de Júpiter en el interior del planeta. Crédito: J. Wicht, MPS

El “dínamo” es un complejo mecanismo físico responsable por convertir un minúsculo campo magnético en una monstruosa envoltura de campos y partículas alrededor de un planeta.  Funciona donde haya un fluido capaz de conducir la electricidad (en este caso el interior de Júpiter es en un 80% un líquido conductor hecho de Hidrógeno), rotación y mucha turbulencia (inducida por el calor que produce el planeta).  La Tierra también tiene su dinamo, pero este solo opera en el núcleo del planeta.  A diferencia del dínamo de la Tierra, que debería ser el mejor entendido, el dínamo de Júpiter es “visible” sin impedimentos si se pone lo suficientemente cerca un sensor de campo magnético.  Esto es lo que hará justamente Juno.  En la Tierra la cosa es mas complicada porque entre el dínamo y nuestros instrumentos hay medio planeta de roca (el manto de la Tierra) y una capa sólida con propiedades magnéticas (la corteza de la Tierra) que interfiere en las observaciones.  Es por eso que el de Júpiter después de Juno será el dínamo mejor entendido del Sistema Solar.

Auroras a unos kilómetros

Así se ven las auroras de #Jupiter desde 150 millones de kilómetros ¿se imaginan las imágenes de #Juno tomadas a menos de 500,000 km?
http://bit.ly/29nLpf6

Crédito: NASA/HST

Crédito: NASA/HST

Esta imagen fue tomada con el telescopio espacial Hubble a más de 700 millones de kilómetros de Júpiter (no 150 millones como dije en el trino).  Las imágenes son tomadas en ultravioleta (por eso se ven de colores un poco extraños).  Ya se imaginaran las imágenes que vamos a recibir de Juno que tiene las “narices” pegadas a Júpiter.  ¡Este pensamiento solo me hace salivar!

Auroras en esteroides

Las auroras de #Jupiter son 5 veces más grandes que las de la Tierra… perdón, ¡que toda la Tierra completa!
http://bit.ly/29wJ1UA

Auroras de Júpiter y auroras de la Tierra

El montaje lo capture durante una de las ruedas de prensa previas a la llegada de Juno. La imagen de las auroras de Júpiter es del Hubble

Una aplastante realidad

Si pusiéramos a la Tierra en el centro de #Jupiter se aplastaría hasta un tamaño similar al de Marte
http://bit.ly/29lUnLe

Tierra y Marte

Se calcula que la presión en el centro de Júpiter es inmensa: 80 millones de veces mayor que la presión en la atmósfera de la Tierra (que es a su vez igual a 10 toneladas por metro cuadrado).  A esas presiones la materia se comporta de formas todavía desconocidas (los experimentos más extremos en la Tierra solo logran producir presiones cercanas a los 5 millones de atmósferas).  Lo que si sabemos es que cualquier material por duro que sea ocuparía un volumen mucho menor que el que ocupa en el vacío.  Así, si la Tierra fuera transportada hasta allí, a las inmensas presiones reinantes en este infierno posiblemente se contraería hasta el tamaño de Marte (tal vez más o menos, no sabemos exactamente).  Incluso el hipotético núcleo rocoso que se sospecha tiene el planeta y que pesa hasta 14 veces lo que pesa la Tierra esta comprimido a un tamaño similar al de nuestro planeta.

 

Indignación con cara de Colombiano

Colombia es uno de los países con más leyes y burocracia del mundo (no tengo fuentes para soportar esta afirmación, pero podría apostarlo).  Una de las razones de este mal endémico de nuestro país es la desconfianza, el principio de “presunción de culpabilidad”: Nadie [especialmente en Colombia] es inocente hasta que no pruebe lo contrario.

Cada que intentas hacer un trámite, comprar una propiedad o publicar algo, debes primero probar vehementemente que no le estas robando a la gente o al estado. La reacción del estado a esto es que cada vez que alguien (una sola persona) comete una falta, las autoridades colombianas corren a inventar una norma que impida que los otros cuarenta y punta millones de colombianos podamos cometer la misma falta (por improbable que sea).

A los colombianos de a pie se nos ha “pegado” esta desconfianza.  A muchos de nosotros, cuando alguien es exitoso o consigue triunfos que nos parecen increíbles, lo primero que se nos viene a la cabeza es la frase “ahí debe haber gato encerrado”.  La primera reacción de un colombiano promedio ante el talento o los logros increíbles de otro colombiano es, como reza el dicho, “de eso tan bueno no dan tanto”.  A veces lo decimos abiertamente, otras veces lo reservamos para la intimidad.   Pero, no lo neguemos.  Lo hacemos frecuentemente.

Por eso hoy, cuando un Mexicano (pero podría ser también un colombiano aunque posiblemente de serlo diríamos que es un envidioso) nos demuestra que alguien en el que habíamos confiado “ciegamente” (en realidad alguien con el que simplemente habíamos aplicado el principio de “todos somos inocentes antes de que se pruebe lo culpable”) nos había estado engañando por años, yo no puedo sino sentir pena por la cultura colombiana.

Cuando por fin habíamos creído en alguien sin mirarlo con los “ojos entrecerrados” pensando “usted es un Colombiano e hizo eso… ¡yo no creo!… pruébelo”; cuando no nos habíamos ocupado de investigar a fondo el producto del talento sin dudar que pudiera darse también en nuestro país, ¡pum! terminamos engañados.

Si todavía no adivinan de qué les estoy hablando, échenle una mirada a la siguiente presentación (dar click en la imagen para ir a la presentación en Slide Share):

Captura de pantalla 2016-03-15 a las 7.38.36 a.m.

Hace unos meses escribí en este blog una entrada, “Indignación con cara de Astrofotógrafo” en la que lamentaba el hurto que había sufrido Leonardo Delgado Ariza de su equipo fotográfico.  Confieso que nunca verifique si esa información era veraz y al sol de hoy no sé realmente si el robo del que hablaba en esa entrada ocurrió realmente.  Confié ciegamente en que lo que él decía era verdad.  Me deje llevar por el principio fundamental del derecho “Leonardo es inocente hasta que alguien demuestre que no lo es”.  Si fuera una entidad del estado tal vez le habría pedido a Leonardo copia de la denuncia y dos testigos con cédula.

Repito que no sé realmente si el hurto del que trataba la entrada ocurrió realmente; lo que si es cierto es que todas las evidencias mostradas por Pablo Loonie Pacheco, autor de la juiciosa investigación que cito arriba, parecen demostrar que me equivoque en mis juicios sobre la calidad del trabajo astrofotográfico de Leonardo (trabajo que todavía no alcanzo a distinguir de sus elaborados montajes).

A pesar de todo (y otra vez apelando a la buena fé) confió que Leonardo tenga fotos que son realmente suyas.  Entre todas las fantásticas imágenes que nos mostraba, deben haber cosas de su propia factura.  Seguro que sí.  Tampoco dudo de su trabajo muy loable con los niños en Bogotá.  Me duele, sin embargo, que el logo de su organización quede vinculado con esta situación tan bochornosa (espero no tener después que admitir que también estaba equivocado en esto… ¡si ven!… ya me estoy comportando como el típico colombiano).

Escribo esta entrada para reconocer mi error y ofrecer disculpas a todos aquellos a los que transmití mi sentimiento de solidaridad con alguien que escondía un oscuro secreto.

Personalmente creo que la solidaridad no es mala incluso cuando se trata de alguien que ha hecho algo indebido.  Pero es cierto que se siente mucha indignación cuando uno ha entregado su confianza (y hasta su plata) a alguien que tenía un secreto de esas dimensiones.

Por ahora he suspendido el acceso a esa entrada (no la he borrado, en caso de que alguien quiera verificar algo sobre ella).  Por respeto a la verdad, sin embargo, presento aquí copia de algunas de las imágenes que publique en ese entonces como si fueran auténticas o de la autoría de Leonardo, esta vez con el debido reconocimiento de sus autores legítimos y con la prueba de que algunas (no sé si todas) estaban severamente trucadas.

La buena fé de los Colombianos que trabajamos en Astronomía, esta hoy de “luto”.  Sin embargo no podemos bajar la guardia y caer nuevamente en la desconfianza.  Hoy reconocemos que alguien nos engaño.  Que no sea esta una excusa para mañana no confiar en nuevos talentos colombianos.  Es cierto que en lo sucesivo seremos más cuidadosos.  Pero ser cuidadoso y no apresurarse, no significa pensar que todos son culpables hasta que demuestren lo contrario.

Captura de pantalla 2016-03-15 a las 7.58.42 a.m.

Análisis realizado por Cesar Cantú Quiroga de una de las imágenes de Leonardo Delgado que publique en mi entrada original.

Captura de pantalla 2016-03-15 a las 8.01.20 a.m.

Análisis de los analemas publicados por Leonardo realizado por Pablo Loonie Pacheco que muestra que la inclinación del patrón es el mismo respecto al horizonte cuando debería cambiar dependiendo de la hora (altura sobre el horizonte en la que fue tomado). Crédito de la comparación: Pablo Loonie Pacheco.

Captura de pantalla 2016-03-15 a las 8.04.01 a.m.

Superposición de la imagen publicada por Leonardo (y reproducida por mí en mi entrada) y la imagen original tomada por Dean Rowe, el autor legítimo.  Crédito de la superposición: Pablo Loonie Pacheco.

Captura de pantalla 2016-03-15 a las 8.06.38 a.m.

Captura de pantalla 2016-03-15 a las 8.07.19 a.m.

Comparación de una de las “increíbles” imágenes de Leonardo con una simulación de la configuración del mismo evento.  Se puede ver que el tamaño de Júpiter en el montaje arriba esta exagerado y que falta Ganymedes que tiene un brillo similar a las otras lunas.  Crédito: Pablo Loonie Pacheco.

 

 

 

 

Redescubriendo las Ondas Gravitacionales

Hoy 11 de febrero de 2016, el equipo científico de LIGO, el Laser Interferometer Gravitational wave Observatory, anunció la que es posiblemente una de las noticias más esperadas en la Astronomía Observacional del último siglo: la posible detección directa de ondas gravitacionales.  El logro científico y tecnológico es realmente alucinante.  Su significado para la Física Teórica y la Astronomía, sin embargo, se ha visto, desde mi muy personal punto de vista, exagerado; especialmente en algunos aspectos en los que para cualquiera que conozca la historia de la física en el siglo xx, resulta increíble el aparente desconocimiento de algunos, de lo ya conseguido en esta área.  He aquí una “perorata” de por qué deberíamos ver con una conciencia más amplia de la historia de la búsqueda de las ondas gravitacionales, este sonado hallazgo. 

“La detección de ondas gravitacionales (OG) será en realidad un logro más técnico que científico. Las OG en realidad se descubrieron en 1974
Enero 13 de 2016
http://bit.ly/trino-LIGO

Un meme que refleja el sentir de algunos científicos

Un meme que refleja el sentir de algunos científicos

Mientras me preparaba para escribir esta entrada de Blog, Walter Tangarife, un buen amigo y destacado Físico Teórico Colombiano, me enviaba por correo una entretenida y clara entrada de Blog de Matt Strassler, escrita horas antes del sonado anuncio de LIGO.

Para quienes puedan leer en inglés fluidamente y prefieran una voz “autorizada” en lugar de la opinión de un Astrofísico paisa amargado como yo, vayan directamente a este enlace;  Matt, esencialmente, presenta en detalle algunas de las ideas y posiciones que quiero exponer a ustedes aquí (es un honor para mí que alguien de su estatura piense parecido).  Si después de leerla les quedan ganas, vuelvan aquí para leer lo que queda de esta entrada.

Mi sentimiento acerca del anuncio de LIGO esta claramente reflejado en el Meme con el que comienza esta entrada.  Sin dejar de reconocer la importancia del hallazgo (que se anunciará en tan solo unos minutos) y reconocer que estoy tan emocionado como cuando Colombia se gano el Miss Universo en dos ocasiones consecutivas (aunque la segunda solo fue una broma de mal gusto), hay algo que me deja un mal sabor de boca.

Ese algo es la idea que parece verse reflejada en casi todo lo que veo escrito por ahí, de que las ondas gravitacionales no se habían descubierto todavía y que el hallazo de LIGO representa un “salto cuántico” en nuestra comprensión de la naturaleza de este fenómeno.

Si bien no todos los que escriben blogs o notas de prensa sobre esto, son tan tontos como para no entender que esta no es la realidad estricta, también es cierto que el gran público, que es dado en consumir información sin poca digestión, merece que se le insista vehementemente en la realidad objetiva detrás de algunos descubrimientos espectaculares.  Casos recientes (y otros no tan recientes) como el de los neutrinos superlumínicos, el descubrimiento de la huella de “paquetes” de ondas gravitacionales en la radiación de fono o de bichos en un meteorito marciano, son pruebas fehacientes de que los comunicadores y científicos debemos ser más responsables al anunciar estas cosas que nos emocionan.

Las ondas gravitacionales existen y revolotean por todo el Universo.  Punto.  De esto no hay absolutamente ninguna duda.  Pero usted puede decir “tampoco había ‘duda’ de que existía el Bosón de Higgs y sin embargo se construyo el LHC para detectarlo”.  Pero el caso es bien distinto.

Las existencia de las Ondas Gravitacionales fue primero intuida por Einstein a principios del siglo xx cuando desarrollaba su teoría de la Relatividad Especial y sembraba las bases de su Relatividad General; lo hizo al reconocer que la influencia de la gravedad no podía llegar instantáneamente de unos cuerpos a otros.

Su teoría de la relatividad (que ha sido confirmada una y otra vez y que hoy no es solo una teoría, sino el cuerpo teórico sobre el que se formulan TODAS LAS TEORÍAS físicas), afirma que algo que transporte información, incluyendo un “hey Luna, estoy aquí, orbítame”, no puede propagarse instantáneamente entre dos puntos del espacio.

Así, si yo quito instantáneamente la Tierra, razonaba Einstein entre 1905 y 1907, la Luna solo se daría cuenta un poco más de un segundo después, de la ausencia de su “patrona” gravitacional.

¿Pero que transporta ese mensaje gravitacional entre los cuerpos?, se preguntaba Einstein en aquellos años.  No fue solo sino hasta que hubo completado su obra intelectual más maravillosa, la Teoría General de la Relatividad (y de cuya historia hable recientemente en esta página), cuando por fin encontró la respuesta: el espacio-tiempo es elástico, como una tela, y si se lo hala por aquí, el halon se propagará por el resto de la “tela” a una velocidad muy grande pero finita (la misma velocidad de la luz, ¿no es increible?).

A todos los fenómenos en los que información pura (no materia) viaja de un lugar a otro a través de un “medio” (materia, fuerzas o espacio-tiempo) y satisface ciertas propiedades matemáticas, lo llamamos una onda (o chisme físico, para los amigos).

A los chismes de espacio-tiempo las llamamos “ondas gravitacionales” (a mi me gusta más “ondas de espacio-tiempo“).

Pero una cosa es una intuición de Einstein o una predicción de una teoría muy bonita (pero falible como todas) y otra es ver el fenómeno o sus efectos en vivo y en directo.

Eso fue justamente lo que DESCUBRIERON en la década de los 70 y 80, Russell Alan Hulse and Joseph Hooton Taylor, Jr., observando el extraño baile de una binaria de estrellas de neutrones (la primera descubierta jamás) usando el para ello entre otros el radio telescopio de Arecibo.

Las estrellas de Neutrones son versiones aumentadas de los núcleos atómicos.  Como nadie sabe que es un núcleo atómico, difícilmente podría entender lo extremas de las condiciones alrededor de una estrella de neutrones.  Pero bueno, solo créanme (como tuve que hacerlo yo en mi momento).

Entre las cosas extrañas que pasan alrededor de las estrellas de neutrones esta el hecho de que el espacio-tiempo esta fuertemente arrugado, al punto que es difícil confundir esas arrugas con una “fuerza mágica de atracción” como confundió Newton el espacio-tiempo arrugado alrededor de la Tierra.

Si al espacio-tiempo arrugado alrededor de un bicho de estos le agregas la presencia de otro bicho similar que para colmo se mueve alrededor del primera (recuerden que forman un par binario), las cosas con el espacio-tiempo se ponen “peludas”.

Lo primero que pasa es que cuando se “mira” el objeto desde la distancia, la gravedad que produce cambia periódicamente con el tiempo (esto debido justamente a qué desde ellas salen ondas de espacio-tiempo contándonos que allí hay una binaria de estrellas de neutrones).  Pero crear estos “chismes gravitacionales” no es gratuito.  Si dos personas se sientan a chismosiar todo el día en una ventana gastarán su energía hasta quedar exhaustas y tal vez morir.

Eso es justamente lo que pasa con las estrellas de neutrones binarias.  De tanto chismosiar al resto del universo de que están juntas dándose vueltas, consumen su energía.   ¿Se enfrían entonces?.  Por suerte las estrellas de neutrones tienen energía por todas partes.  La energía que se va en la forma de ondas gravitacionales, la sacan del movimiento una alrededor de la otra.  Como resultado, las dos empiezan a aproximarse mutuamente orbitando su centro común de movimiento en tiempos cada vez menores.

Si se usa un radiotelescopio suficientemente poderosos podrás ver el cambio en el movimiento de las estrellas de neutrones a medida que emiten Ondas Gravitacionales.  Ese fue justamente (parte) de los descubrimientos de Husle y Taylor que los llevo finalmente a ganar el premio Nobel en 1993.  Fue este también justamente el momento en el que descubrimos las ondas gravitacionales.

Comparación de las observaciones de las propiedades del pulsar binario de Husle-Taylor y la predicción de la Relatividad usando ondas gravitacionales. La coincidencia es perfecta. Este gráfico marco el descubrimiento de las ondas gravitacionales en 1974.

Comparación de las observaciones de las propiedades del pulsar binario de Husle-Taylor y la predicción de la Relatividad usando ondas gravitacionales. La coincidencia es perfecta. Este gráfico literalmente demuestra que las ondas gravitacionales existen.

¿Y entonces? ¿por qué tanta bulla con LIGO?  Lo que ha descubierto LIGO (ya lo puedo decir en presente porque mientras termino de escribir veo las redes sociales invadidas de los resultados espectaculares anunciados por el equipo del detector) es, no solo un fenómeno similar al descubierto por Husle y Taylor, la perdida paulatina de energía y posterior coalescencia de dos objetos de masas enormes, dos agujeros negros de más de 20 veces la masa del Sol, sino que además la DETECCIÓN DIRECTA de las ondas gravitacionales, los chismes, que emergieron durante este fantástico evento.

Representación artística más los datos tomados por LIGO de la coalescencia de dos agujeros negros de más de 20 veces la masa del Sol. Las curvas azul y roja representan las "observaciones" y la predicción de la teoría de Einstein. Juzguen por su cuenta la coincidencia entre ambos. Crédito: LIGO/NSF.

Representación artística más los datos tomados por LIGO de la coalescencia de dos agujeros negros de más de 20 veces la masa del Sol. Las curvas azul y roja representan las “observaciones” y la predicción de la teoría de Einstein. Juzguen por su cuenta la coincidencia entre ambos. Crédito: LIGO/NSF.

LIGO no ha descubierto las ondas gravitacionales.  Eso es claro.  Pero las ha detectado por primera vez y todos estamos felices por ello.

La mejor noticia de todas es que el día de hoy marca el nacimiento oficial de una nueva rama de la Astronomía: la Astronomía no electromagnética; es decir aquella que no depende de la luz y de otras ondas electromagnéticas para detectar cosas que están muy lejos.

A diferencia del pulsar binario de Husle y Taylor, los agujeros negros bailarines de LIGO nunca fueron vistos por un radiotelescopio o un telescopio en otras longitudes de onda.  Todo lo que sabemos ahora de este par (es decir lo que sabemos desde hace unos minutos cuando lo anunciaron oficialmente) lo aprendimos única y exclusivamente a partir de las ondas gravitacionales detectadas por LIGO.

Como dicen los anuncios publicitarios “ningún fotón fue herido o capturado en esta película”.

Pero insisto. La detección no es igual al descubrimiento.  Estamos frente a un “salto cuántico” tecnológico, mas no a uno científico.  En esto podrían discrepar muchos de mis colegas.  Las posibilidades científicas que se abren en la ciencia son muchas, pero todo hay que decirlo, incluso en los momentos más emocionantes.  En realidad todos sabíamos que las ondas gravitacionales estaban ahí desde hace décadas.

Término con algo que me gusta aún más de todo esto y que se lo leí hace un par de horas a Matt (recuerden leer la maravillosa entrada de blog que recomende al principio): descubrir la coalescencia de dos agujeros negros es aún más espectacular para confirmar las predicciones de la Relatividad General que detectar unas ondas que sabíamos existían desde la presidencia de Reagan.

Para saber más:

  • Entren a Google y escriban: “Gravitational+Waves+LIGO” y si no encuentran lecturas que los satisfagan están en la olla.
  • Aún así les recomiendo esta nota de prensa publicada por mi buen amigo Juan Rafael Martínez en el periódico El Tiempo de Colombia: este enlace.
  • Para los más ñoños lean el paper original anunciando el descubrimiento: este enlace.
  • Aquí hay un interesante recuento histórico de la búsqueda de ondas gravitacionales en el último siglo: este enlace.
  • Una entrevista exclusiva con Einstein acerca de la detección de las ondas gravitacionales: este enlace.

Notas:

  • Edison en los comentarios hace unas precisiones que considero muy pertinentes y que han implicado cambios sutiles en el texto (resaltados en rojo).  La más importante es recordarnos que en realidad 1974 es tan solo el año en el que se descubrió la binaria de estrellas de neutrones.  En realidad las medidas que llevaron a confirmar que su período orbital estaba cambiando tal y como lo predecía la relatividad fue un trabajo que se extendió, casi una década, entre 1973 y 1982.  En mi “defensa” debo decir que la fecha de nacimiento de la Teoría Cuántica también se cifra en el año 1900, con el trabajo de Planck sobre la radiación de cuerpo negro, aunque todos sabemos que la teoría cuántica en realidad fue “entendida” y desarrollada durante dos décadas después de eso.

Otra falacia

Existe la “creencia” muy extendida de que existen profundas diferencias entre las (mal) llamadas ciencias “naturales” y ciencias “humanas”.  Estas diferencias (imaginarias) no han hecho más que separar a quienes nos dedicamos a las unas o a las otras, creando barreras artificiales que solo le hacen daño al proyecto científico.  Les propongo aquí que defendamos la idea de que solo hay una ciencia, la ciencia a secas; un proyecto social muy humano que busca develar los misterios de la naturaleza, sea esta la naturaleza humana o la del interior de los agujeros negros.

“Otra falacia: ciencias naturales y ciencias humanas.
La ciencia es un solo proyecto con muchas preguntas

Diciembre 12 de 2015
http://bit.ly/trino-ciencias-humanas

ciencias_humanasVisita a Medellín por estos días la Filósofa Norteamericana Martha Nussbaun, hablando entre muchas otras cosas del valor del humanismo y las artes para hacer de esta una sociedad mejor. Entre los escenarios en los que se ha presentado, está el Parque Explora, nuestro museo interactivo local de Ciencia y Tecnología.

Mientras leía los comentarios en los foros alrededor de su reciente conferencia sobre la Ira, descubrí una crítica vedada al Parque Explora.  Palabras más, palabras menos, la crítica señalaba que era bueno que de vez en cuando, Explora, dejará de presentar solo conferencias de ciencias naturales y también presentará charlas de ciencias humanas.

Razonable, ¿No?.

Pues, no.  La crítica no solo es injusta porque por los escenarios de Explora no solo han pasado premios Nobel de Física, Química o Medicina, sino también psicólogos, sociólogos, politólogos sin mencionar una decena de poetas, actores y músicos.  La crítica también esconde lo que considero es una arraigada creencia de que existen diferencias fundamentales entre las ciencias naturales y las humanas.  Creencia propagada muchas veces por los mismos científicos que se dedican a las unas o a las otras.

No podría decirles si somos los llamados científicos “naturales” (físicos, astrónomos, biólogos, químicos) los que hemos contribuido a sostener este “mito”; todo con el único propósito de que no se confunda lo que hacemos (que es obviamente muy importante) con los esfuerzos, “baldíos” para muchos, de comprender la naturaleza social y humana; o el dudoso esfuerzo de usar para ello principalmente las palabras y los razonamientos no numéricos (investigación cualitativa).

En contraste (y entiéndase por favor el tono irónico) los científicos “naturales” usamos los números y la lógica proposicional estricta para describir sistemas que se pueden “realmente” descomponer y describir, sea este una Galaxia o una sociedad de hormigas (¡!).  Más importante aún los científicos “naturales” diseñamos experimentos reproducibles, en los que el azar es controlado rigurosamente poniendo en evidencia los patrones que se esconden detrás de la infinita diversidad “natural”.

O tal vez son los científicos “humanos” (psicólogos, sociólogos, antropólogos, filólogos, politólogos) los responsables del “cisma”.  Ellos, que se dedican a disciplinas que respetan y valoran la condición humana, que no la ven *solo* como un fenómeno “natural” o biológico, señalan a sus contrapartes como técnicos “positivistas”, desprovistos (en su mayoría) de sensibilidad social o humana y con un reprochable fetichismo por los números y la reproducibilidad.

En contraste (otra vez en tono irónico), los científicos humanos usan la razón de forma rigurosa para describir y argumentar fenómenos normalmente asociados a la naturaleza humana o a las sociedades que formamos.  Ellos reconocen el valor de todas las formas de conocimiento y muchas veces comparan a las “ciencias naturales”, con “otras” formas de superstición o mito que nacen en el seno de las sociedades humanas.

¡Dejémonos de pendejadas!  Ciencia no hay sino una.  Preguntas y propiedades emergentes, muchas.

La misma palabra “natural” usada por científicos, sean estos físicos, economistas o sociólogos, es realmente chocante.  Un vicio histórico que a la luz de los más recientes descubrimiento biológicos, sociológicos o neurológicos, carece de todo sentido.  Se entiende que la use un teólogo para quién existe por principio una división entre lo natural y lo sobre natural (inaceptable por principio para la ciencia).  En la ciencia todo es “natural”, desde las hojas de un árbol, hasta una epifanía religiosa.

Para usar una analogía, hablar de “ciencias naturales” es como decir “deporte de competencia”.

Pero ¿en qué soporto esta “extraña” idea?.  Separar a las ciencias “naturales” de las “humanas” es, simplemente, desconocer la naturaleza misma de la ciencia.

La ciencia no es solo un conjunto de conocimientos acumulados sobre el mundo, sea este “natural” o “humano” (de nuevo la falacia).  La ciencia es una manera de obtener y depurar conocimiento sobre cualquier aspecto del mundo, usando para ello mecanismos que han sido también depurados a través de siglos de quehacer científico.  La ciencia, a diferencia de la superstición, no ha sido creada por un solo ser humano (o un par de ellos).  Es una propiedad social “emergente”, inesperada, producto de la interacción de muchos hombres y mujeres a lo largo de siglos.

Lo que diferencia a unos científicos de otros son las preguntas que buscan resolver usando para ello el modus operandi de la ciencia: observación, hipótesis, evidencia, experimentación, “falsación”, revisión por pares, etc.  En este sentido, existen tantas formas de ciencia como preguntas podríamos formular.  Siendo el número de preguntas virtualmente ilimitado, carece de todo sentido crear un sistema de unas pocas categorías para clasificar el quehacer científico.

¿Deberíamos entonces dejar de hablar también de “ciencias biológicas”, “ciencias físicas”, “ciencias químicas”, etc.?  ¡Pues sí!.  Como diría Richard Feynman, “la naturaleza no tiene la culpa de nuestros programas de estudio”.

La separación entre las ciencias (ya no en las falaces categorías de naturales y humanas), sino en las categorías más usadas de física, psicología, biología, medicina, sociología, etc. responde creo yo a la tendencia muy humana de clasificar las cosas para entenderlas mejor.  También es un vicio histórico de tiempos cuando creíamos que no existía ningún vínculo, por ejemplo, entre el pensamiento y el metabolismo, o entre la electricidad y el sabor a mantequilla.

Varios siglos de descubrimientos científicos no han hecho más que borrar las fronteras inexistentes entre las otrora bien diferenciadas disciplinas científicas.  Hoy, un químico puede terminar haciendo biología de la misma manera que un físico puede hacer economía, todo, sin dejar de ser científico.

¡Pero cuidado! No se puede confundir esta propuesta a unificar en un solo concepto todos los esfuerzo científicos con otro mito muy extendido: la idea de que todos los “científicos naturales” somos unos reduccionistas a ultranza.  El reduccionismo es aquel “mito” que supone que todas las manifestaciones naturales se reducen y pueden ser descritas en última instancia por las leyes simples de la “física”, la “química” o la “biología”.

¡No hay ninguna aspiración reduccionista aquí!

Ha sido la misma investigación científica la que nos ha enseñado que de la suma y la interacción de unidades “simples” (los individuos en un hormiguero, los átomos en una macromolécula, las neuronas en un tejido), emergen propiedades inesperadas, imposibles de predecir a partir de las leyes que rigen a las partes.  La psicología no puede predecir lo que pasa en un estadio.  La física atómica no puede predecir todas las propiedades de una proteína.  La biología celular no puede predecir la conciencia.

Es por esto que necesitamos formular preguntas a todos los niveles. ¿Por qué soñamos? y ¿cómo se comunican las neuronas? no son las mismas preguntas.  La respuesta a una no conduce deductivamente a la respuesta a la otra (aunque naturalmente se relacionan entre sí).

Lo que es común a quiénes persiguen la respuesta a ambas preguntas es el modo de buscarlas.  Revisan las observaciones disponibles.  Formulan una hipótesis.  Diseñan un experimento para poner a prueba la hipótesis.  Interpretan si los resultados falsean o soportan la hipótesis. Predicen nuevos comportamientos.  Y en el proceso se enfrentan abiertamente a la crítica de sus pares.  Eso es la ciencia.  Ambas cosas las hacen psicólogos y neurocientíficos por igual.

Otro Decálogo de Relatividad

Por estos días se respira Relatividad en cada rincón de Internet.  Ayer, 25 de Noviembre de 2015 se cumplieron 100 años del nacimiento de la famosa teoría (bueno, de su versión “general”).  Si bien es posible que estemos ya cansados de la multitud de lecturas que han circulado en todos los medios, conferencias, videos explicativos, documentales, etc. no hay que desaprovechar esta oportunidad para empezar a pensar cómo vamos a hacer para que la centenaria teoría pase de ser una curiosidad a lo que es realmente: la teoría que define el conjunto de reglas básicas con las que funciona el mundo en el que vivimos.  Los ofrezco aquí mi granito de arena: una lista sencilla de ideas, expresadas en las que espero yo sean palabras también muy sencillas, para entender la Relatividad desde una perspectiva más cotidiana.

“Ahora que la Relatividad General cumplió 100 años, toca empezar a pensar cómo se la vamos a enseñar a los niños ¿alguien se ofrece?
Noviembre 26 de 2015
http://bit.ly/trino-relatividad-ninos

albert_einstein_10

Si pudiéramos explicar la Teoría de la Relatividad ¿cómo podríamos hacerlo breve y claramente?.

Como las listas son un método rápido para comprimir y organizar el conocimiento, les ofrezco aquí 10 ideas básicas sin los cuáles no podría entenderse la relatividad y su importancia, no solo para la física sino también para nuestras vidas.

UnoLa relatividad no trata sobre lo que es “relativo”. Al contrario; Einstein se devano los sesos por más de 10 años entre 1905 y 1915, para encontrar lo que no era relativo; es decir las cosas, cantidades, propiedades del mundo que no cambiaban dependiendo del que las viera.

Leer más…

¿Dónde esta la bolita?

Pi es una constante geométrica muy especial.  Aparece toda vez que un círculo, una circunferencia o una esfera asoma sus “narices” en la descripción idealizada del mundo que hacemos en un problema de física o astronomía.  Pero, ¿es Pi algo más que un número útil? o ¿es este número tan importante en el Universo de “verdad” como lo es en el Universo idealizado de las matemáticas y la geometría? Ahora que celebramos el Día de Pi más importante del siglo 21 (3/14/15,9:26:53 en formato americano), la pregunta por el verdadero lugar de pi en la descripción del universo físico vuelve a ganar actualidad.  Compilo aquí algunas leyes y relaciones físicas y astronómicas en las que el número Pi es protagonista sin que sea evidente “dónde esta la bolita”.

“El Universo es Múltiplo de Pi #PiDay2015 ”
Marzo 14 de 2015
http://bit.ly/trino-multiplo-pi

Celebrando Pi con dos amigos de Medellín: Shamadi que cumplió el 3/14 16 años y su mamá Piedad.

Celebrando Pi con dos amigos de Medellín: Shamadi que cumplió el 3/14 16 años y su mamá PI-edad (toda una familia “consagrada” a Pi).

El sábado 14 de marzo de 2015 fue una fecha muy especial para quienes gozamos con las curiosidades del fantástico número pi.  Si escribimos la fecha en el estándar americano, 3/14/15, y le agregamos una hora exacta del día, 9:26:53.589793238… el resultado, es una coincidencia que volvería loco a cualquier numerólogo: la fecha, con hora incluída, reprodujo por un brevísimo instante de tiempo la TOTALIDAD de los dígitos decimales del popular guarismo.

Para los aficionados y profesionales de las ciencias y las matemáticas que celebramos con entusiasmo la ocasión, la fecha no es más que un coincidencia sin ningún significado profundo (como parecen haberlo creído algunos), aunque si una oportunidad fantástica para hablar de matemáticas a diestra y siniestra, como no se hace normalmente el resto del año.

Como bien saben, yo soy uno de esos locos que vibra por Pi y por otros irracionales emparentados con él (lea mi entrada anterior Obsesión Irracional) y no me iba a perder tan singular celebración.  Para ello prepare y dicte una conferencia que ofrecí comenzando exactamente a la hora indicada.  Como no soy matemático, sino Físico y Astrónomo, mi enfoque para la charla fue el de intentar encontrar y mostrar a Pi escondido en el Universo.

El resultado me ha dejado a mí y creo también a quienes asistieron a la charla aquel 14 de marzo, impresionados: Pi parece estar en todas partes.

Pi en los ríos

Comencemos por los ríos.  Que aburrido sería el mundo si el camino que siguiera el agua al fluir desde las montañas hacia al mar, los lagos u otros ríos fuera completamente rectilíneo.  Por suerte el mundo es más interesante y los ríos parecen más serpientes grabadas en bajo relieve, que canales rectos fabricados por un aburrido arquitecto.

Los meandros del Río Amazonas (en esta foto un tramo en territorio peruano) también tienen relación con pi.

Los meandros del Río Amazonas (en esta foto un tramo en territorio peruano) también tienen relación con pi.

Los efectos y factores físicos que determinan la forma y longitud de los denominados “meandros” (las interminables curvas que dan los ríos) son diversos y complejos.  Aún así una propiedad numérica asombrosa emerge en medio de su serpenteante belleza.  Si se divide la longitud total de un río entre dos puntos arbitrarios (preferiblemente muy alejados uno de otro), por la distancia medida en línea recta entre esos mismos puntos, el resultado es siempre un número muy cercano a 3.   A este número se lo llama en inglés “meander ratio”.

Si el río se extiende por kilómetros y los meandros se multiplican por decenas, el valor del “meander ratio” tiende a ser igual al valor de pi.  En términos matemáticos:

Distancia recorrida por el río / Distancia en línea recta = pi

Puesto de otra manera: si en un paseo al Amazonas te toca hacer un viaje en bote entre dos pueblos muy alejados, la distancia que recorrerás por el río (o el tiempo que tardarás en recorrerlo) será aproximadamente pi veces la distancia en línea recta (medida por ejemplo sobre un mapa) entre el punto de salida y de llegada.

Pi hará tu viaje por el Amazonas mucho más emocionante.

Pi y los Péndulos

El péndulo de un reloj de péndulo tiene también a pi escondido por ahí.

El péndulo de un reloj de péndulo tiene también a pi escondido por ahí.

Receta para obtener Pi con una regla, una cuerda y un reloj.

  • Ata un objeto pesado a una cuerda larga.
  • Amarra la cuerda de un extremo de modo que el objeto quede colgando libremente.
  • Haz oscilar al objeto de modo que la amplitud no sea muy grande (15 grados o menos).
  • Mide el tiempo que le tarda al péndulo completar 5, 10 o 20 oscilaciones.
  • Divide el tiempo total por el número de oscilaciones escogidas.

Ese número, que es igual a lo que le toma al péndulo realizar una oscilación, se llama el período de oscilación.

Si se multiplica el período por sí mismo (o se eleva al cuadrado como decimos en matemáticas), se multiplica luego el resultado por la aceleración de la gravedad (un número que en casi todas partes en la Tierra vale aproximadamente 9.8 m/s/s) y se divide lo que de por la longitud total del péndulo, el resultado SIEMPRE es el mismo: 39,4784…

“¡Pero este número no tiene nada que ver con Pi!” – se quejaran la mayoría.  Pero eso es porque no conocen los parientes del guarismo.  39.4784… es nada más y nada menos que 4 veces el cuadrado de pi.

Todos los péndulos del planeta, que oscilan con una amplitud pequeña, obedecen la misma regla básica:

Período x Período x gravedad / longitud = 4 pi x pi

Pero ¿dónde esta la bolita? ¿que tiene que ver un péndulo con un círculo o una esfera?.  He ahí el punto: ¡Nada!.  Tanto este ejemplo como el anterior con los ríos serpenteantes, demuestran que Pi es una constante que trasciende su definición original para aparecer donde nadie se lo espera.

Un Pi muy salado

Hasta un inocente salero tiene a pi por millones.

Hasta un inocente salero tiene a pi por millones.

Pi esta hasta en la Sal de mesa.  Pero ¿dónde? ¿acaso los cristales de sal son esféricos o forman círculos cuando se los junta de cierta manera?. ¡Nada de eso!

A nivel microscópico la Sal de Mesa esta compuesta de una innumerable colección de átomos de Sodio y Cloro unidos por su mutua atracción eléctrica.  El átomo de Cloro, más grande y pesado que el de Sodio tiende a arrebatar al segundo su último electrón.  Con ello adquiere una carga eléctrica negativa.  El Sodio, que estaba en equilibrio eléctrico antes del “atraco”, adquiere en el proceso una carga positiva.  Una vez cargados eléctricamente los dos átomos se atraen con una fuerza minúscula para nuestros estándares pero lo suficientemente poderosa a escala microscópica como para crear los granitos de Sal que terminan en nuestros alimentos.

En los años 1700s una serie de experimentos y teorías físicas permitieron precisar la fuerza con la que las cargas eléctricas se atraen.  Pues bien, justamente esas ideas nos enseñan como pi esta metido hasta en la sopa.

Si se eleva al cuadrado la carga (que es igual) de dos iones vecinos de Cloro y Sodio en la sal y se la divide primero por la fuerza de atracción eléctrica entre ellos y luego por el cuadrado de la distancia que separa sus centros, el resultado es siempre el mismo: 4 pi.

No importa que la sal haya sido extraída de una salina en la Guajira (Colombia), una mina en Africa o se encuentre disuelta en los océanos interiores de una Luna de Júpiter, la operación anterior siempre produce el mismo resultado:

carga x carga / (Fuerza x distancia x distancia ) = 4 pi

Los conocedores del tema se quejaran de que a la anterior ecuación le falta algo, una constante de la naturaleza llamada por los expertos permitividad eléctrica del vacío.    Sin embargo, es cierto también, como reconocerán esos mismos lectores agudos, que las constantes son simples reflejos de los patrones que usamos para medir las cantidades físicas.

Si se escogen de manera adecuada los patrones para medir carga, fuerza y distancia, la permitividad eléctrica del vacío podría volverse 1 y desaparecer de la anterior relación.  Aún así, no importa los patrones usados para medir el mundo eléctrico de los iones, el 4 pi de la relación anterior seguirá ahí.

Cuantos Pi

El color de la luz de Neón es un múltiplo de pi.

El color de la luz de Neón es un múltiplo de pi.

Hay un lugar increíble donde pi también esta presente. Es el mundo microscópico de los átomos y las partículas elementales.

Lejos de los círculos y las esferas del mundo que nos rodea, allí donde las reglas de la física convencional se rompen dando paso a reglas extrañas y ajenas a nosotros, Pi deja también su huella imborrable.

Un caso notable: las propiedades de la luz emitida por los gases.

Piensen por ejemplo en el Neón de las lamparas de un aviso luminoso.  Los átomos de Neón en estas lámparas están sometidos a una continúa descarga de energía que los excita permanentemente.  Esto significa que los electrones de los átomos allí presentes, en lugar de tener la energía más pequeña que puedan, están a veces excitados y listos para la acción.

Pero a un electrón excitado no le dura mucho la dicha.  Se calcula que pasará aproximadamente una cien millonésima de segundo antes que el electrón pierda la energía de su excitación y la entregue al espacio circundante como un rayo de luz.

La energía de los rayos de luz que salen de este proceso es muy precisa: ella es igual a la diferencia entre la energía del estado excitado y la mínima energía en la que puede estar el electrón.  Los átomos de cada elemento químico en el Universo producen rayos de luz de diferentes energías permitiéndole a los científicos identificarlos por su color.

Pero no todo es color de rosa (rosa Neón).  El mundo microscópico nos tiene preparada una trampa.  Uno de las leyes más importantes de la teoría cuántica dice que no es posible conocer con absoluta precisión todas las características de un sistema microscópico (los electrones excitados en el átomo de Neón por ejemplo).  Si conocemos con precisión la energía de excitación de un electrón, no podremos saber cuando adquirió o perdió esa energía.  Al contrario, si sabemos cuándo un electrón gana o pierde una cierta energía nos será imposible precisar cuánta energía exactamente tiene o tenía.

Si nuestros cuerpos macroscópicos obedecieran las leyes de la física cuántica, y en particular este, que es conocido como el principio de incertidumbre de Heisenberg, se podría conocer el peso exacto de una persona, pero no al mismo tiempo, su edad exacta.  Y al contrario, saber la edad con precisión (por ejemplo al celebrar su cumpleaños) nos impediría determinar su peso.  Extraño, ¿no?

El principio de incertidumbre en el Neón de una lampara hace que sus electrones no emitan siempre la misma energía cuando se desexcitan.  Dado que su excitación dura un brevísimo instante de tiempo y por lo tanto sabemos más o menos cuándo ocurrió, su energía no puede conocerse con la misma precisión.

¿Y dónde esta la bolita? o al menos ¿dónde esta pi?

Si se multiplica el tiempo que dura un electrón excitado, por el rango de energías en el que emite al desexcitarse, el resultado puede ser cualquiera pero nunca menor que un número mágico: 0.159154…

Como adivinaran este guarismo esta relacionado otra vez con pi: es el inverso del doble de pi.  Lo anterior puesto en matemáticas se lee como:

Incertidumbre en la Energía x Incertidumbre en el tiempo > 1/(2 pi)

Aquí no hay círculos o esferas.  Solo las reglas extrañas y fascinantes de la teoría cuántica, que parecen estar “contaminadas” también por el misterioso pi.

De nuevo, a mis agudos lectores les advierto que en la ecuación anterior falta una “constante” de la naturaleza: la constante de Planck.  El argumento sin embargo puede ser el mismo que utilizamos para la Sal y sus átomos eléctricos.  Aún mejor: la constante de Planck podría ser absorbida por la incertidumbre en la energía para convertirla en una incertidumbre en la frecuencia (Mega hertz) de la luz emitida.  ¡Ustedes escojan!

Expansión y Pi

La expansión del Universo también esta emparentada con pi.

La expansión del Universo también esta emparentada con pi.

Si los ejemplos anteriores no los han convencido de que Pi es algo más que círculos y esferas, he aquí un ejemplo para irse para atrás:  la expansión del Universo sería un múltiplo de Pi.

El fenómeno de la expansión del Universo fue descubierto en los años 20 por un Astrónomo Belga, George Lemaitre e independientemente por el que se llevo todo el crédito, Edwin Hubble.

Según la teoría de Einstein de la gravedad (la única capaz de explicar satisfactoriamente el fenómeno) el espacio entre las galaxias gana cada segundo kilómetros nuevos.  Las galaxias embebidas en esa red de carreteras que se ensancha, no necesitan moverse un ápice para que todos los días sus distancias mutuas aumenten.

Al ritmo al que se crea nuevo espacio en el Universo se lo llama Constante de Hubble (y en realidad no es constante y técnicamente tampoco sería de Hubble por las razones históricas previamente esbozadas).  Su valor actual ronda los 68 km/s/Mpc.  En “cristiano” esto significa que entre dos galaxias situadas una de otra a ~3 millones de años luz (1 Mpc) se crean 68 km cada segundo.  No parece nada para las enormes distancias que las separan, pero si se multiplica ese número por el número de segundos que ha vivido el Universo, el efecto se vuelve realmente notorio.

¿Dónde entra pi?

Según la teoría de la gravedad de Einstein el ritmo de expansión se relaciona con la cantidad de masa y energía que hay en el Universo.   A mayor masa, mayor será también el ritmo de expansión.  Pues bien si se divide el cuadrado de la constante de Hubble por la densidad total de masa y energía del Universo actual el resultado es un solo número: 8.37758…  Siguiendo la tradición de esta entrada, adivinaran que este número es pariente de pi.  En realidad su valor es igual a 8 pi /3.

En términos matemáticos:

Constante de Hubble x Constante de Hubble / Densidad de materia-energía = 8 pi / 3

Otra vez: ¿dónde esta la bolita?.  No hay ninguna esfera o círculo implicado en esta ecuación.  Lo único que tenemos son las reglas de la gravedad tal y como las describió Einstein en 1905 y que incorporan de manera natural el número pi.

Espero que quiénes hayan sobrevivido leyendo hasta este punto tengan ahora claro que pi es algo más que la razón entre el perímetro y el diámetro de una circunferencia.

A decir verdad el bendito numerito aparece con más frecuencia en las leyes de la física de lo que uno podría esperar.  Propiedades que uno pensaría no tendrían nada que ver con un círculo o una esfera, tales como el número y tamaño de las curvas de un río, la atracción entre dos átomos cargados o la edad del Universo, parecen misteriosamente emparentados con pi.

El Universo, tal parece, es un múltiplo de pi.

Navegador de artículos